2016年考研數學大綱解析:數三之線性代數
2016年《全國碩士研究生入學統(tǒng)一考試數學考試大綱》今天正式亮相。為了幫助2016屆的考生更好的進行線性代數的備考,跨考教育數學教研室郭靜娟老師針對線性代數的考試大綱特地給出以下備考指南,希望能夠幫助廣大的考生考到自己理想的分數,進入自己理想中的大學。
對照2015年考試大綱,2016年數三大綱中線性代數部分的內容沒有變化。
2015年與2016年考研線性代數大綱變化對比——數三 |
||||
|
章節(jié) |
2015年數學考試大綱考試內容和考試要求 |
2016年數學考試大綱考試內容和考試要求 |
變化對比 |
線 性 代 數 |
一、行列式 |
考試內容 行列式的概念和基本性質 行列式按行(列)展開定理考試要求 1.了解行列式的概念,掌握行列式的性質. 2.會應用行列式的性質和行列式按行(列)展開定理計算行列式. |
考試內容 行列式的概念和基本性質 行列式按行(列)展開定理考試要求 1.了解行列式的概念,掌握行列式的性質. 2.會應用行列式的性質和行列式按行(列)展開定理計算行列式. |
對比:無變化 |
二、矩陣 |
考試內容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求 1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質. 2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質. 3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法. 5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則. |
考試內容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求 1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質. 2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質. 3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法. 5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則. |
對比:無變化 |
|
三、向量 |
考試內容 向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規(guī)范化方法考試要求 1.了解向量的概念,掌握向量的加法和數乘運算法則. 2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法. 3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩. 4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系. 5.了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法. |
考試內容 向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規(guī)范化方法考試要求 1.了解向量的概念,掌握向量的加法和數乘運算法則. 2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法. 3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩. 4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系. 5.了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法. |
對比:無變化 |
|
四、線性方程組 |
考試內容 線性方程組的克拉默(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線性方程組(導出組)的解之間的關系 非齊次線性方程組的通解 考試要求 1.會用克拉默法則解線性方程組. 2.掌握非齊次線性方程組有解和無解的判定方法. 3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法. 4.理解非齊次線性方程組解的結構及通解的概念. 5.掌握用初等行變換求解線性方程組的方法. |
考試內容 線性方程組的克拉默(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線性方程組(導出組)的解之間的關系 非齊次線性方程組的通解 考試要求 1.會用克拉默法則解線性方程組. 2.掌握非齊次線性方程組有解和無解的判定方法. 3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法. 4.理解非齊次線性方程組解的結構及通解的概念. 5.掌握用初等行變換求解線性方程組的方法. |
對比:無變化 |
|
五、矩陣的特征值和特征向量 |
考試內容 矩陣的特征值和特征向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值和特征向量及相似對角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質,掌握求矩陣特征值和特征向量的方法. 2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法. 3.掌握實對稱矩陣的特征值和特征向量的性質. |
考試內容 矩陣的特征值和特征向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值和特征向量及相似對角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質,掌握求矩陣特征值和特征向量的方法. 2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法. 3.掌握實對稱矩陣的特征值和特征向量的性質. |
對比:無變化 |
|
六、二次型 |
考試內容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規(guī)范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形. 3.理解正定二次型、正定矩陣的概念,并掌握其判別法. |
考試內容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規(guī)范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形. 3.理解正定二次型、正定矩陣的概念,并掌握其判別法. |
對比:無變化 |
特別聲明:①凡本網注明稿件來源為"原創(chuàng)"的,轉載必須注明"稿件來源:育路網",違者將依法追究責任;
②部分稿件來源于網絡,如有侵權,請聯系我們溝通解決。
25人覺得有用
18
2015.09
2016年考研數學大綱解析:數二之線性代數 2016年《全國碩士研究生入學統(tǒng)一考試數學考試大綱》......
18
2015.09
2016年考研數學大綱解析:數一之線性代數 2016年《全國碩士研究生入學統(tǒng)一考試數學考試大綱》......
18
2015.09
2016年考研數學大綱解析必須注意的幾個關鍵詞 2015年9月18日2016考研數學大綱發(fā)布,數學部分沒......
18
2015.09
2016年考研數學大綱之數三內容的考與不考 2016考研數學大綱新鮮出爐,跨考教育數學教研室佟慶......
18
2015.09
2016年考研數學大綱之數二考試范圍分析 對數學不好的同學考研數學讓每一個要看數學的同學畏懼......
18
2015.09
2016年考研數學大綱專題解析之不等式證明 新考研大綱如約而至。筆者作為奮戰(zhàn)在教學一線的數學......